Kinematics of exclusive measurements with EIC

Discussion, EIC User Group Yellow Reports Meeting, 19-21 Mar 2020 C. Weiss, with R. Dupre, S. Fazio, T. Lappi, B. Pasquini, D. Sokhan

Plan for discussion

Go over different types of processes/final states
Summarize physics objectives
Discuss rough outlines of kinematics, starting from proposition
Identify questions for quantitative study

Considerations

- Same process can address different physics at small/large x (e.g. DVCS). Need to be clear about objectives!
- Some kinematic boundaries are determined by counting rates (e.g. high Q^2)
- Focus on role of CM energy and need for lower energies
 - CM energy dependence of exclusive cross sections and observables? Methods for exclusive event reconstruction at $y\ll 1$?
- Focus on *t*-coverage needed for physics objectives

Types of processes for discussion

- DVCS
- Vector mesons $J/\psi, \phi, \rho^0$ ("diffractive")
- Pseudoscalar and charged vector mesons $\pi, \eta, K, K^*, \rho^+$ ("nondiffractive")
- Coherent processes on light and heavy nuclei
- High-t and backward processes
- High-mass photoproduction TCS
- $N \to N^*$ transitions (considerations specific to N^*)

Follows organization of Yellow Report. Questions? Comments?

Deeply virtual Compton scattering DVCS

Physics: Valence quark GPDs spin/flavor at $x \gtrsim 0.1$ Sea quark and gluon GPDs at $x \lesssim 0.1$ Dispersion relations (= integrals over ν) connect Im/Re, D-term \leftrightarrow EM tensor Transverse imaging of nucleon

Kinematics (proposed):

```
x({
m low})={
m kin\ limit}, \qquad x({
m high})=0.1?\ 0.3? Q^2({
m low})\sim 1\ {
m GeV}^2, \qquad Q^2({
m high})={
m rate\ limit}={
m few\ 10\ GeV}^2 \Delta_T({
m low})=0, \qquad \Delta_T({
m high})=1\text{-}2\ {
m GeV}?
```

Questions:

How important is lower CM energy for DVCS event reconstruction and observables? How important is Δ_T coverage at zero and large values?

Vector meson production J/ψ , ϕ , ρ^0

Physics: Gluon GPDs $J/\psi, \phi$; gluon + singlet quark GPDs ρ^0 Transverse imaging, t-dependence of gluon form factor Soft-hard transition as function of Q^2 "Diffractive" channels, high rates at small x

Kinematics (proposed):

```
x({
m low})={
m kin\ limit}, \qquad x({
m high})\sim 0.1? Q^2({
m low})=0, \qquad Q^2({
m high})={
m few}\ 10\ {
m GeV}^2={
m rate\ limit} \Delta_T({
m low})=0, \qquad \Delta_T({
m high})=2\text{-}3\ {
m GeV}?
```

Comments:

Aim to measure all channels at same (x,Q^2) for comparative studies Special case: Near-threshold production of heavy quarkonia, incl. Υ . High-t process! Benefits of lower CM energy?

Pseudoscalar and charged vectors $\pi, \eta, K, K^*, \rho^+$

Physics: Quark GPDs valence/sea, flavor separation, helicity and transversity Emergence of Regge dynamics from QCD Unexplored at x < 0.1, soft or hard regime "Nondiffractive" channels, rates drop at small x, more challenging

Kinematics (proposed):

```
x({
m low})={
m rate\ limit}, \qquad x({
m high})\sim 0.1?\ 0.3? Q^2({
m low})=0, \qquad Q^2({
m high})={
m few}\ 10\ {
m GeV}^2={
m rate\ limit} \Delta_T({
m low})=0, \qquad \Delta_T({
m high})\sim 1\ {
m GeV}?
```

Comments:

Can we separate L/T through ϕ -dependent response functions? Advantages of lower CM energy?

Coherent processes on light nuclei

Physics: Nuclear quark GPDs $x \gtrsim 0.1$, spin structures, transverse imaging Nuclear gluon GPDs $x \ll 0.1$, nuclear shadowing as function of impact parameter Nuclear targets with spin-0, 1/2, 1 Possible processes DVCS, J/ψ , others

Kinematics (proposed):

$$x({
m low})\sim 10^{-3}$$
 $x({
m high})\sim 0.1?$ $Q^2({
m low})\sim 1~{
m GeV}^2,$ $Q^2({
m high})={
m few}~10~{
m GeV}^2={
m rate}~{
m limit}$ $\Delta_T({
m low})=0,$ $\Delta_T({
m high})\sim {
m few}~100~{
m MeV}?$

Comments/questions:

Need Δ_T coverage from 0 to \sim few 100 MeV, good resolution Beam momentum smearing effects likely important [\rightarrow this afternoon] Advantages of lower CM energy?

Coherent processes on heavy nuclei

Physics: Nuclear gluon GPD $x \ll 0.1$, nuclear shadowing as function of impact parameter, possibly saturation effects Possible processes $J/\psi, \phi$, others

Kinematics (proposed):

$$x({
m low})\sim {
m kin\ limit}$$
 $x({
m high})\sim 0.01$ $Q^2({
m low})\sim 0$, $Q^2({
m high})={
m few\ GeV}^2$? $\Delta_T({
m low})=0$, $\Delta_T({
m high})\sim 100$ MeV?

Comments/questions:

Coherent process identified by veto detection of nuclear breakup

Beam momentum smearing effects essential [-> this afternoon]

 Δ_T measurement through vector meson?

Likely very challenging measurement